Запись и чтение десятичных дробей

Десятичная дробь отличается от обыкновенной дроби тем, что знаменатель у нее — это разрядная единица.

Например: отличие обыкновенной дроби от десятичной

Десятичные дроби выделены из обыкновенных дробей в отдельный вид, что привело к собственным правилам сравнения, сложения, вычитания, умножения и деления этих дробей. В принципе, с десятичными дробями можно работать и по правилам обыкновенных дробей. Собственные правила преобразования десятичных дробей упрощают вычисления, а правила преобразования обыкновенных дробей в десятичные, и наоборот, служат связкой между этими видами дроби.

Запись и чтение десятичных дробей позволяет их записывать, сравнивать и производить действия над ними по правилам, очень похожим на правила действий с натуральными числами.

Впервые система десятичных дробей и действий над ними была изложена в XV в. самаркандским математиком и астрономом Джемшид ибн-Масудаль-Каши в книге «Ключ к искусству счета».

Целая часть десятичной дроби отделена от дробной части запятой, в некоторых странах (США) ставят точку. Если в десятичной дроби нет целой части, то перед запятой ставят число 0.

К дробной части десятичной дроби справа можно дописывать любое количество нулей, это величину дроби не изменяет. Дробная часть десятичной дроби читается по последнему значащему разряду.

Например:
0,3 — три десятых
0,75 — семьдесят пять сотых
0,000005 — пять миллионных.

Чтение целой части десятичной дроби такое же, как и натуральных чисел.

Например:
27,5 — двадцать семь...;
1,57 — одна...

После целой части десятичной дроби произносится слово «целых».

Например:
10.7 — десять целых семь десятых

0,67 — ноль целых шестьдесят семь сотых.

Десятичные знаки — это цифры дробной части. Дробная часть читается не по разрядам (в отличие от натуральных чисел), а целиком, поэтому дробная часть десятичной дроби определяется последним справа значащим разрядом. Разрядная система дробной части десятичной дроби несколько иная, чем у натуральных чисел.

  • 1-й разряд после занятой — разряд десятых
  • 2-й разряд после запятой — разряд сотых
  • 3-й разряд после запятой — разряд тысячных
  • 4-й разряд после запятой — разряд десятитысячных
  • 5-й разряд после запятой — разряд стотысячных
  • 6-й разряд после запятой — разряд миллионных
  • 7-й разряд после запятой — разряд десятимиллионных
  • 8-й разряд после запятой — разряд стомиллионных

В вычислениях чаще всего используются первые три разряда. Большая разрядность дробной части десятичных дробей используется только в специфических отраслях знаний, где вычисляются бесконечно малые величины.

Перевод десятичной дроби в смешанную дробь состоит н следующем: число, стоящее до запятой записать целой частью смешанной дроби; число, стоящее после запятой — числителем ее дробной части, а в знаменателе дробной части записать единицу со столькими нулями, сколько цифр стоит после запятой.

Например: перевод десятичной дроби в смешанную дробь

Перевод обыкновенной дроби в десятичную дробь — это вычисление частного отделения числителя дроби на знаменатель по правилам действий с десятичными дробями:

Перевод обыкновенной дроби в десятичную дробь

Но не все обыкновенные дроби можно перевести в десятичную дробь. Например: она третья — нет такого множителя, который с множителем 3 даст в произведении разрядную единицу.

Запись опубликована в рубрике Математика с метками , . Добавьте в закладки постоянную ссылку.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *


*