Цилиндр, конус, шар

Цилиндр, конус и шар относятся к объемным (трехмерным) геометрическим фигурам вращения.

Объемные фигуры вращения (еще говорят — «тела», подразумевая объемность фигуры), как правило, образованы вращением плоской фигуры вокруг какой-то линии (прямой).

Так, цилиндр — это фигура, полученная от вращения прямоугольника вокруг одной из его сторон как оси; конус — вращением прямоугольного треугольника вокруг его катета как оси, шар — вращением полукруга вокруг его диаметра как оси.

Объемные фигуры бывают прямые (прямой цилиндр, прямой конус) и наклонные (наклонный цилиндр, наклонный конус), что зависит от вида той плоской геометрической фигуры, которая их образует.

В курсе математики для б класса рассматриваются только прямые цилиндры и конусы

.

Определение. Цилиндр — это тело (объемная геометрическая фигура), полученное вращением прямоугольника вокруг одной из его сторон как оси.

цилиндр

Определение. Конус (прямой) — это тело (объемная геометрическая фигура), полученное вращением прямоугольного треугольника вокруг его катета как оси.

конус

Определение. Шар — это тело (объемная геометрическая фигура), полученное вращением полукруга вокруг его диаметра как оси.

шар

Развертки цилиндра и конуса

Разверткой геометрической фигуры называется изображение плоскости, ограничивающей фигуру, в одной плоскости листа по размерам фигуры.

Развертка цилиндра приведена схематически.

развертка цилиндра

Развертка конуса приведена схематически.

развертка конуса

Площади боковой поверхности цилиндра и конуса

Правило. Площадь боковой поверхности цилиндра равна произведению длины окружности основания и высоты цилиндра.

площадь боковой поверхности цилиндра

где C — длина окружности, H — высота цилиндра, R — радиус окружности основания.

Правило. Площадь боковой поверхности конуса равна произведению половины длины окружности основания и образующей конуса.

площадь боковой поверхности конуса

где C — длина окружности основания, l — длина образующей конуса, R — радиус основания.

Площадь поверхности шара

Правило. Площадь поверхности шара равна учетверенной площади большого круга шара.

площадь поверхности шара

где R — радиус шара.

Объемы цилиндра, конуса и шара

Правило. Объем цилиндра равен произведению площади основания н высоты.

объем цилиндра

где R — радиус основания, H — высота цилиндра.

Правило. Объем конуса равен одной трети произведения площади основания и высоты конуса.

объем конуса

где R — радиус основания, H — высота конуса.

Правило. Объем шара равен четырем третям
произведения числа Пи на куб радиуса.

объем шара

где R — радиус шара.

Запись опубликована в рубрике Математика с метками , , , , , . Добавьте в закладки постоянную ссылку.

загрузка...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *


*

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>