Прямая призма

Многогранником называется такое тело, поверхность которого состоит из конечного числа плоских многоугольников.

Прямая призма относится к простейшим многогранникам. Каждая грань (многоугольник, ограничивающий многогранник) многогранника расположена в своей плоскости. Пересечение граней многогранника проходит по линии его ребер.

призма

На рис. 18 — пятигранная прямоугольная призма (в основании призмы лежит пятиугольник). У нее 10 вершин; 5 боковых граней; 2 основания (верхнее и нижнее). Для прямоугольной призмы высотой служит любое ребро, расположенное перпендикулярно основанию.

Боковые грани прямоугольной призмы — прямоугольники. Сумма площадей этих прямоугольников составляет площадь боковой поверхности призмы.

Площадь поверхности призмы состоит из суммы площадей двух (одинаковых) оснований и площади боковой поверхности.

Определение. Призма — это многогранник, у которого две грани, называемые основаниями, — равные многоугольники, а все остальные — боковые грани, состоящие из параллелограммов, плоскости которых параллельны одной прямой, называемой ребром многогранника.

Высота призмы — это расстояние между ее основаниями. Для прямой призмы, у которой все ребра перпендикулярны основаниям, — это любое из ребер.

Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю призмы.

Разверткой призмы называется перенос без искажения размеров всех ее граней в одну плоскость. Развертка призмы, изображенной на рис. 18, приведена на рис. 19.

развертка призмы

На рис. 19 прямоугольник, разделенный ребрами на 5 меньших прямоугольников, составляет развертку боковой поверхности, а сверху и снизу от нее расположены многоугольники верхнего и нижнего оснований. Площадь всей этой фигуры и составит полную площадь поверхности призмы.

Правило. Площадь боковой поверхности призмы равна произведению периметра основания и высоты.

Sбок = p * h

где:
Sбок — площадь боковой поверхности

p — периметр основания призмы (многоугольника, лежащего в основании);
h — высота призмы (для прямоугольной — это длина бокового ребра призмы).

Правило. Объем прямой призмы равен произведению площади основания н длины бокового ребра.

V = Sбок * l

где:
V — объем призмы;
Sбок — площадь основания призмы (многоугольника, лежащего в основании призмы);

l — длина бокового ребра призмы.

Запись опубликована в рубрике Математика с метками . Добавьте в закладки постоянную ссылку.

загрузка...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *


*

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>