Мутационная изменчивость

Мутации и селекция

Наследственные изменения генетического материала называют мутациями. По характеру проявления они могут быть доминантными и рецессивными. Это обстоятельство очень важно для существования вида и его популяций.

Мутации оказываются, как правило, вредными, поскольку вносят нарушения в тонко сбалансированную систему биохимических превращений, перестраивают генетический аппарат. Обладатели вредных доминантных мутаций, сразу же проявляющихся в гомо- и гетерозиготном организме, часто оказываются нежизнеспособными и погибают на самых ранних этапах онтогенеза. В результате мутаций появляются и наследуются аномалии в строении тела, наследственные болезни человека.

Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют соответственно полулетальными и летальными. У человека к таким мутациям относят рецессивный ген гемофилии.

По характеру изменений генетического аппарата различают мутации: геномные, обусловленные сменой числа полного набора хромосом.

  • Хромосомные мутации связаны с изменением структуры хромосом или их числа.
  • Полиплоидия — увеличение числа хромосом, кратные гаплоидному набору. Различают среди растений триплоиды (Зп), тетраплоиды (4п) и т. д. В растениеводстве известно более 500 полиплоидов (сахарная свекла, гречиха, мята и т. д.). Все они выделяются большой вегетативной массой н имеют большую ценность.
  • Гетероплоидия — изменение числа хромосом ие кратное гаплоидному набору. Это мутации, связанные с избытком или недостатком одной хромосомы из пары гомологичных хромосом. Такие мутации возникают при нарушении мейоза, когда после конъюгации пара хромосом не расходится и в одну гамету попадают обе гомологичные хромосомы, а в другую ни одной.
  • Гетероплоидия вредна для организма. Например, у человека появление лишней хромосомы в 21 паре вызывает синдром Дауна (слабоумие).
  • Генные мутации — затрагивают структуру самого гена и влекут за собой изменения свойств организма (гемофилия, дальтонизм, альбинизм и др.).
  • Точковые, или генные мутации, обусловлены заменой одного или нескольких нуклеотидов в пределах одного гена. Они влекут за собой изменение строения белков, заключающееся в появлении новой последовательности аминокислот в полипептидной цепи.

Мутации возникают как в соматических, так и в генеративных клетках. Биологическое значение их для человека неоднозначно. Соматические мутации по наследству не передаются и в процессе эволюции особого значения не имеют. Однако в индивидуальном развитии они могут воздействовать на формирование признаков. Если мутация происходит в генеративных клетках, из которых развиваются гаметы, то новые признаки появляются в ближайшем или последующем поколениях.

События нашего века показали, какие потенциальные опасности таит в себе облучение живых организмов, в том числе и человека. С биологической точки зрения самым опасным является ионизирующее излучение, к которому относятся рентгеновские лучи и радиоактивное излучение. В больших дозах ионизирующее излучение разрушает и губит клетки. Меньшие дозы приводят к другим дефектам: разрывам в молекулах ДНК, при котором клеточное деление становится невозможным. Менее выраженные повреждения проявляются в форме мутаций, которые при делении клеток передаются потомкам. Такого рода мутации соматических клеток вызывают рак и другие заболевания.

Характер мутаций не зависит от внешней среды, однако такие факторы, как ионизирующее излучение и некоторые химические вещества, увеличивают частоту мутаций. Воздействие на человека высоких доз коротковолновых излучений вызывает развитие лучевой болезни.

Генетический эффект облучения редко проявляется сразу, однако не следует недооценивать грозящей будущим поколениям опасности накопления вредных генов в популяции.

При выведении новых сортов растений и штаммов микроорганизмов используют индуцированные мутации (искусственно вызываемые различными мутагенными факторами: химическими веществами, рентгеновскими или ультрафиолетовыми лучами). Затем проводят отбор полученных мутантов, сохраняя наиболее продуктивные.

Н. И. Вавилов, изучая мутации у родственных видов, установил закон гомологических рядов в наследственной изменчивости. .у.

Генетически близкие виды н роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов н родов.

Руководствуясь законом, можно предсказать, какие мутационные формы должны возникнуть у близкородственных видов домашних животных, новых сортов культурных растений, а также новые ожидаемые формы (виды, роды) в систематике.

Приложение законов наследственности и изменчивости к теории селекции привело к лучшему пониманию и значительному усовершенствованию ряда важных методов селекции, разработке новых методов, дало возможность составлять различные селекционные программы.

Селекция (от лат. «селиктио» — отбор) — наука о выведении новых и совершенствовании существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов, соответствующих потребностям человека и уровню производительных сил общества.

Сорт, порода и штамм — это популяции, искусственно созданные человеком, имеющие определенные наследственные особенности: комплекс морфологических и физиологических признаков, продуктивность и норму реакции.

Создателем современной генетической основы селекции является Н. И. Вавилов. По его мнению, селекция это эволюция, направляемая человеком.

Основные методы селекции: гибридизация и отбор.

Этапы селекционной работы

I этап селекционной работы

Исходное сортовое и видовое разнообразие растений и животных — объекты селекционной работы (без знания исходного материала, без изучения его происхождения и эволюции невозможно совершенствование существующих форм животных и растений).

На данном этапе используются работы Н. И. Вавилова по установлению центров происхождения культурных растений в очагах древнейшего земледелия, созданию их коллекции и использованию в качестве исходного материала. Таких центров восемь.

  1. Южноазиатский тропический центр. Тропическая Индия, Индокитай, Южный Китай, острова Юго-Восточной Азии. Исключительно богат культурными растениями (около ½ известных видов культурных растений). Родина риса, сахарного тростника, множества плодовых и овощных культур.
  2. Восточноазиатский центр. Центральными Восточный Китай, Япония, остров Тайвань, Корея. Родина сои, нескольких видов проса, множества плодовых и овощных культур. Этот центр тоже богат видами культурных растений — около 20% мирового многообразия.
  3. Юго-Западноазиатский центр. Малая Азия, Средняя Азия, Иран, Афганистан, Северо-Западная Индия. Родина нескольких форм пшеницы, ржи, многих зерновых, бобовых, винограда, плодовых. В нем возникло 14% мировой культурной флоры.
  4. Средиземноморский центр. Страны, расположенные но берегам Средиземного моря. Этот центр, где располагались величайшие древние цивилизации, дал около 11% видов культурных растений. В их числе маслины, многие кормовые растения (клевер, одноцветковая чечевица), многие овощные (капуста) и кормовые культуры.
  5. Абиссинский центр. Небольшой район Африканского материка с очень своеобразной флорой культурных растений. Очевидно, очень древний очаг самобытной земледельческой культуры. Родина зернового сорго, одного вида бананов, масличного растения нута, ряда особых форм пшеницы и ячменя.
  6. Центральноамериканский центр. Южная Мексика. Родина кукурузы, длинноволокнистого хлопчатника, какао, ряда тыквенных, фасоли — всего около 90 видов культурных растений.
  7. Андийский (Южноамериканский) центр. Включает часть районов Андийского горного хребта вдоль западного побережья Южной Америки. Родина многих клубненосных растений, в том числе картофеля, некоторых лекарственных растений (кокаиновый куст, хинное дерево и др.)

Подавляющее большинство культурных растений связано в своем происхождении с одним или несколькими из перечисленных выше географических центров.

II этап — скрещивание (гибридизация)

Бывает двух видов:

  1. Близкородственное — инбридинг (позволяющее перевести рецессивные гены в гомозиготное состояние);
  2. Неродственное (помогающее объединить в одном организме ценные признаки разных форм).

III этап — отбор — завершающий этап селекции.

Известно две формы отбора:

  • массовый (выделение группы особей, сходных по фенотипу, но дающих расщепление при размножении)
  • индивидуальный (выделение единичных ценных форм и раздельное выращивание Потомства каждой особи) приводит к созданию сорта или породы чистой линии.

В селекции растений широко используется инбридинг, полиплоидия, искусственный мутагенез, отдаленная гибридизация.

В области селекции растений много сделали известные селекционеры-генетики: И. В. Мичурин и Г. Д. Карнеченко, II. В. Цицин, П. II. Лукьяненко, В. Н. Ремесло, В. С. Пустовойт и л р.

Ими были выведены высокоурожайные сорта сахарной свеклы, гречихи, хлопчатника; высокопродуктивные кубанские сорта пшеницы, украинские сорта «Мироновская-808, «Юбилейная-50», «Харьковская-63» и др.

Селекция животных отличается от таковой у растении: животные дают мало потомков, у них позднее наступает половозрелость, они не размножаются вегетативно, отсутствует самооплодотворение.

В селекции животных используют гибридизацию и отбор (массовый и индивидуальный), инбридинг и другие методы (М. Ф. Иванов, Н. С, Батурин и др.)

Селекция микроорганизмов — молодая, развивающаяся отрасль селекции. Ее задача — получение высокопродуктивных микроорганизмов путем воздействия на исходные формы лучами Рентгена, ультрафиолетовыми лучами и химическими мутагенами.

Чередование обработки мутагенами с отбором позволяет выделять штаммы, по продуктивности в десятки раз превосходящие исходный.

Генетика

Генетика популяций — наука о генетической структуре природных популяций и генетических процессах, происходящих в ней, таких, как дрейф генов, миграция, мутация и отбор.

Все организмы состоят из больших популяций, в которых по законам генетики поддерживается равновесие генетического материала. Однако это равновесие постоянно нарушается мутационными процессами, миграциями, дрейфом генов и другими факторами.

Все разнообразие в человеческих популяциях — есть результат мутационных изменений. Видный генетик С. С. Четвериков (1882—1959) внес существенный вклад в доказательство связи генетики с эволюцией. Он показал, что первые элементарные процессы начинаются в популяциях. Природные популяции при относительной фенотипичной однородности по генетической структуре разнородны и насыщены множеством открытых мутаций, образующих резерв {генетический груз) наследственной изменчивости.

Под генетической структурой понимают соотношение в ней разных генотипов и аллельных генов. Английский математик Харди и немецкий врач Вайнберг установили, что при идеальных условиях — крупной популяции отсутствии мутаций, миграций и отбора — соотношение генотипов и аллельных генов во всех поколениях постоянно.

Резерв наследственной изменчивости в популяции образуется за счет мутации. Доминантные мутации возникают редко, проявляются сразу и подвергаются отбору,

Рецессивные мутации у гетерозиготных организмов фенотипически не проявляются, но при скрещивании насыщают генофонд популяции и образуют новые генотипы.

Генофонд популяций пополняется также за счет генного потока — миграции особей из других популяций, приносящих новые гены. Они, также, как мутации, при скрещиваниях первое время у гетерозиготных организмов не проявляются. Одним из путей относительно быстрого изменения частот генов является случайное распределение генов, называемое дрейфом генов.

Дрейф генов, случайная, нецеленаправленная смена частоты встречаемости аллелей в популяции, обуславливаемая периодическими популяционными волнами. Чаще всего дрейф генов встречается в малочисленных популяциях. В результате дрейфа генов в популяции может возрастать частота встречаемости редких аллелей, некоторые аллели могут исчезать; длительный период могут сохраняться мутантные аллели, что снижает приспособленность особей к условиям жизни.

Резерв наследственной информации образуется еще и за счет комбинативной изменчивости, при которой в одном генотипе объединяются и обезвреживаются разнонаправленные мутации.

Накапливаясь в популяции, скрытые мутации частично переходят в гомозиготное состояние и тогда проявляются фенотипически. В постоянных условиях стабилизирующий отбор (отбор в пользу нормы признака) устраняет их как несоответствующие условиям среды.

В меняющихся условиях, при действии движущего отбора (отбора некоторых отклонений от установившейся нормы признаков), резерв наследственной изменчивости позволяет популяции приспосабливаться к новым условиям среды. Чем больше генотипов в популяции, тем шире ее норма реакции, тем вероятнее ее выживание в меняющихся условиях и возможность полнее использовать новые места обитания.

Каждый биологический вид обладает уникальным генофондом, поэтому одной из важнейших задач человечества является охрана генофонда естественных популяций организмов.

Запись опубликована в рубрике Общая биология с метками , . Добавьте в закладки постоянную ссылку.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*