Многогранники и Объем многогранников

Многоугольники относятся к плоским геометрическим фигурам. К объемным (трехмерным) геометрическим фигурам относятся многогранники.

Определение. Многогранник — это геометрическое пространственное тело, ограниченное со всех сторон конечным числом плоских многоугольников (граней).

Прямоугольный параллелепипед является многогранником. Простейший прямоугольный параллелепипед — это куб. У него все грани равны

.

многогранник

У прямоугольного параллелепипеда каждая грань — прямоугольник, который имеет с соседней гранью общую сторону и две общие вершины.

У параллелепипеда 8 вершин, 4 боковых прямоугольника и 2 прямоугольника в основаниях. У куба все б граней — равные квадраты. У прямоугольного параллелепипеда боковые фигуры и основания — прямоугольники. Эти прямоугольники попарно равны (равны прямоугольники оснований и две пары противолежащих прямоугольников, составляющих боковые грани). Следовательно, грани прямоугольного параллелепипеда являются прямоугольниками трех типов, различающихся размерами.

Три прямоугольника с разными размерами имеют
одну общую точку — вершину параллелепипеда.

параллелепипед

У каждой вершины параллелепипед имеет общую точку для трех отрезков, которые называются измерениями параллелепипеда (длина, ширина и высота). Три измерения на верхнем рисунке параллелепипеда выделены жирной линией.

Объем — это то количество жидкости или сыпучего материала, которое можно поместить внутрь фигуры (между граничными плоскостями).

Объем — это одна из характеристик трехмерных геометрических фигур.

Объем обозначается большой латинской буквой V («вэ»). Величины объема взаимосвязаны (одну кубическую единицу объема можно заменить ругой).

Правило. Объем прямоугольного параллелепипеда равен произведению трех его измерений.

Единицами измерения объема служат:

  • а) стандартные единицы длины в кубе:
    1 см3 = 1 000 мм3

    1 дм3 = 1 000 см3 = 1 000 000 мм3
    1 м3 = 1 000 дм3 = 1 000 000 см3 — 1 000 000 000 мм3

    1 км3 — 1 000 000 000 м3
  • б) специальная единица объема (литр):
    1 л = 1 дм3 = 1 000 см3.

Формула для расчета объема прямоугольного параллелепипеда:

V = a * b * c

где а — длина, Ь — ширина, с — высота.

Так как у куба все измерения равны (а = Ь = с), то формула для вычисления объема куба V = а3.

Примеры

  1. Вычислить объем прямоугольного параллелепипеда длиной 6 м, шириной 4 м и высотой 8 м.

    Решение. Так как длина, ширина и высота измеряются одной и той же единицей длины (м), то подставим их в формулу V=а*Ь*с и вычислим объем:

    V = 6 * 4 * 8 = 192 (м3)
    Ответ: 192 м3.

  2. Вычислите объем куба со стороной основания 10 см.

    Решение. Подставим численное значение стороны куба в формулу вычисления объема V=а3 и вычислим:
    V = 10 * 10 * 10 = 103 = 1 000 (см3) — 1 л.

    Ответ: 1 000 см3, или 1 л.

Запись опубликована в рубрике Математика с метками , . Добавьте в закладки постоянную ссылку.

загрузка...

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *


*

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>